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SUMMARY

The di�erence between a presumed distribution of �amelet position and a numerically simulated dis-
tribution of distance function (a signed distance to �amelet) is investigated. It is shown that even if
the distribution of �amelet position is symmetrical and close to Gaussian, the distribution of distance
function away from the mean �ame position is skewed towards the mean position and the mean of the
distance function is also di�erent from the distance to the mean position. The di�erence depends on the
distance to the mean �ame and the �ame wrinkling amplitude. An extension method for the variance
of the distance function and an upwind scheme for solving the re-initialization equation are presented.
A numerical simulation of a premixed turbulent �ame is compared to experimental data. Copyright ?
2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Level-set methods are often used in the modelling of premixed turbulent combustion with
�amelet libraries. The reason is that in premixed �ames there is no conserved scalar, such
as the mixture fraction in non-premixed �ames, to calculate the instantaneous or mean �ame
position. Instead, the instantaneous �ame front is often represented by the iso-surface G=0 of
a scalar G. The level-set equation for G can be derived from the kinematic balance between
the gas �ow velocity and the burning velocity of the mixture relative to the gas [1]. Similarly,
the mean �ame front can be represented by the iso-surface �G=0. The equation for the mean
level-set function ( �G) can be obtained through the balance between the mean �ow velocity
and the mean turbulent burning speed.
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In direct numerical simulations (DNS) the instantaneous �ame surface position can be
calculated, but in averaged approaches a mean �ame surface is traced instead. In Reynolds-,
or Favre-averaged Navier Stokes (RANS) equation based approaches, such as a modelling in
the k − � frame-work, it is not su�cient to use the �G=0 level surface. A probability density
function (PDF) of �amelet position is also needed to describe the turbulent �ame brush.
To describe the �ow�eld outside the mean �ame brush, information about the distance to the
�amelet is needed, for which, a new quantity—a distance function, is introduced. The distance
function is de�ned as the signed distance to the instantaneous laminar �amelet in turbulent
�ames. The position of the �amelet may be de�ned at the inner-layer of the chemical reaction
zone, at which the production rate of radicals is equal to the consumption rate of radicals. The
absolute value of a distance function at a given �ow�eld point is equal to the distance from
the point to the �amelet. The sign of the distance function denotes the relative position of the
point to �amelet: a positive distance function indicates the studied �ow�eld point locates at the
burned post�ame region, while a negative one corresponds to the unburned region. The mean
distance function which is the averaged signed distance to the �amelet surface, is employed in
ensemble averaging of the �amelet library over a presumed probability distribution of distance
function. Mean density, temperature, viscosity and species concentrations at any point in the
�ow�eld can be calculated using the ensemble average [2–4]. The solution for mean density
and viscosity are coupled with the numerical solution of the RANS equations in an iterative
procedure.
There is a di�erence between the distribution of �amelet position and the distribution of

distance function. The latter should be employed in the ensemble averaging. This di�erence
is investigated in the present work. An ensemble of di�erent �ame shapes is generated and
statistics is calculated so that the actual distributions of �amelet position and distance function
can be compared.
In order to compute the probability distributions with su�cient accuracy, care has to be

taken in the re-initialization. The re-initialization is the process in which the distance function
is computed in all points of the domain outside the �ame surface. It is essential to maintain
an upwinding discretization at the �ame surface in order not to disturb this surface in the
re-initialization. Therefore the sub-cell �x scheme [5], modi�ed for non-isotropic grids, is
presented here.
A solution method for information extension is also presented here. It is shown that the

variance of the distribution of distance function may be modelled as constant along a normal
to the mean �ame surface. In order to perform the ensemble averaging of libraries over
distributions, the variance of the probability distribution has to be known in addition to the
mean value and the presumed PDF shape. The variance depends on the �uctuations of �ame
position around the mean �ame surface ( �G=0). Therefore the variance at �G=0 has to be
computed �rst. An extension method is then necessary to extend this information to all points
in the domain.
This paper begins with a short review of the RANS level-set �amelet library approach

(FLA) for premixed turbulent combustion, followed by a description of the extension meth-
ods. Thereafter a description of the re-initialization procedure is presented. The main
focus, the di�erence between the probability distribution of distance function and the
distribution of �amelet position is then investigated. The methods are also applied to the
simulation of a lean premixed turbulent �ame and the results are compared to experimental
data.
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2. LEVEL-SET FLA

2.1. G-�eld

In the FLA, the mean position of a turbulent �ame front is described with the �G-equation:

�̇G + ũ · ∇ �G= sT|∇ �G| for �G=0 (1)

The �G-equation is only used to determine the mean �ame position, i.e. the �G=0 surface. The
Favre averaged �uid velocity is denoted with ũ and the �ame surface propagates relative to
the �uid with the speed sT in a direction normal to the surface. The mean �ame propagation
speed, which is also referred to as the turbulent burning velocity, is only de�ned at the mean
�ame surface, i.e. at �G=0. �G is a mean distance function after solving the following equation

|∇ �G|=� for �G �=0 (2)

� is a positive variable. It is unity far outside the mean �ame brush and ��1 near the
mean �ame position. This parameter will be further discussed below. Equation (2) determines
�G outside the �G=0 surface and only the position of the �G=0 surface is determined by
Equation (1). The solution of Equation (2) after the solution of Equation (1) is referred to
as re-initialization or re-normalization.
If �G and ũ are replaced by their corresponding instantaneous variables, and sT replaced by

the local laminar burning velocity, Equation (1) describes the instantaneous �amelet position
in the turbulent �ow�eld. If �G is replaced by G and � replaced by unity, G from Equation
(2) is the instantaneous distance function. In Sections 4 and 5, this set of equations for
instantaneous G is used to study the PDF distribution of the �amelet position and distance
function.

2.2. Ensemble averaging

The average molar fractions, temperature and density, at any given point (x; y; z) of the �ow
�eld, are obtained with an integration over the �amelet library, X (g) times the PDF of distance
function, ˝(g).

�X =
∫ ∞

−∞
X (g)˝(g) dg (3)

Here g is an integration variable in the sample space of distance function. The �amelet
library (X (g)) contains the distribution pro�les of density, temperature, viscosity and species
concentrations across the laminar �amelet (as a function of distance function) [3, 4]. In order
to perform the above integration, the PDF of distance function (˝(g)), which is related to
the PDF of the �amelet position, has to be known.
As a �rst approximation, the shape of the PDF of distance function can be assumed to be

similar to that of the PDF of �amelet position. The variance of the PDF may be approximately
constant along a normal to the mean �ame surface. This assumption is more accurate for a one-
dimensional turbulent �ame. However, For two or three-dimensional �ames it is less justi�able
(see Figure 1). This issue will be explored in Section 5. The distribution of �ame position
around the mean �ame surface is often assumed Gaussian, as indicated from experiments
[6, 7].
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Figure 1. Sketch of PDFs of distance function and �amelet position.

3. EXTENSION METHODS

Several quantities such as the turbulent burning speed and variance of �amelet position, are
only de�ned at the mean �ame position. These quantities can be extended outside the mean
�ame brush.

3.1. Velocity extension

In order to solve Equations (1) and (2) simultaneously, term sT� − ũ · ∇ �G can be rede�ned
and computed with an extension method, so that all levels along the normal of the �G=0
level surface propagates with the same velocity. Then the distance function will automatically
persist when the �G=0 surface moves.

3.2. Scalar extension

If a scalar f (e.g. the variance of G) is constant along the normal of the �G=0 surface, the
projection of the gradient of f on the direction normal to the �G=0 surface is zero:

∇ �G · ∇f=0 (4)

which, in two-dimensional form, can be written and discretized on a Cartesian grid as

@ �G
@x
@f
@x
+
@ �G
@z
@f
@z
=0⇒ �x �G

�x�x︸ ︷︷ ︸
�x

�up
x f +

�z �G
�z�z︸ ︷︷ ︸

�z

�up
z f=0 (5)

The derivatives of �G can be estimated with a central di�erence here and are denoted with
�x �G=�x and �z �G=�z, respectively. The scalar f has to be computed with an upwind dif-
ference, depending on which two neighbours have the lowest absolute values of �G, i.e. f-
information should propagate from the �ame position, �G=0. The derivatives of f are denoted
with �up

x f=�x and �
up
z f=�z, respectively. The upwinding is only necessary for the scalar f,

since the �G �eld is not updated here.
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Figure 2. Extension in quadrant Q=1.

To determine from which direction f-information should come, i.e. where the �G=0 surface
is, a quadrant notation (Q) is employed. It is built from two binary switches, Qx and Qz:

Qx=

{
1 | �Gi−1; l|¡| �Gi+1; l|
0 else

Qz=

{
2 | �Gi; l−1|¡| �Gi; l+1|
0 else

Q=Qx +Qz

(6)

The four quadrants (Q) can be seen in Figure 2.
If the �G=0 surface is between the point i; l and one of its closest neighbours, it is called

a close point. Otherwise it is called a far point. A switch is designed to check whether a
point i; l is close or far:

close




�Gi; l �Gi−1; l¡0
�Gi; l �Gi+1; l¡0
�Gi; l �Gi; l−1¡0
�Gi; l �Gi; l+1¡0

far else

(7)
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3.3. Far points

In far points, f can be extended by the following four expressions for the quadrants, respec-
tively:
Q=0:

�x(fi+1; l − fi; l) + �z(fi; l+1 − fi; l)=0

⇒−fi; l (�x + �z)︸ ︷︷ ︸
�+

+fi+1; l�x + fi; l+1�z=0

⇒fi; l=
1
�+
(fi+1; l�x + fi; l+1�z) (8)

Q=1:

�x(fi; l − fi−1; l) + �z(fi; l+1 − fi; l)=0

⇒fi; l (�x − �z)︸ ︷︷ ︸
�−

−fi−1; l�x + fi; l+1�z=0

⇒fi; l=
1
�−
(fi−1; l�x − fi; l+1�z) (9)

Q=2:

�x(fi+1; l − fi; l) + �z(fi; l − fi; l−1)=0

⇒−fi; l (�x − �z)︸ ︷︷ ︸
�−

+fi+1; l�x − fi; l−1�z=0

⇒fi; l=
1
�−
(fi+1; l�x − fi; l−1�z) (10)

Q=3:

�x(fi; l − fi−1; l) + �z(fi; l − fi; l−1)=0

⇒fi; l (�x + �z)︸ ︷︷ ︸
�+

−fi−1; l�x − fi; l−1�z=0

⇒fi; l=
1
�+
(fi+1; l�x + fi; l+1�z) (11)
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3.4. Close points

For the case of the �G=0 surface being close, a modi�cation is necessary, because here f at
the actual surface �G=0 has to be estimated. This is done in the following way. If the �G=0
surface is located as in Figure 2, f in the updated point, (x0; z0), should be taken from the
point p. The co-ordinates of point p are computed by

(xp; zp)= (x0 − dx; z0 + dz)

dx= �G0
�x �G0
�x

; dz= �G0
�z �G0
�z

(12)

The value of f in point p, fp, is estimated using the neighbouring points f0(x0; z0), f1(x1; z1)
and f2(x2; z2), as follows:

fp(xp; zp)= ca + cxxp + czzp (13)

where the constants come from the solution of a system of equations with three variables:

cz=
(f1 − f0)(x2 − x0)− (f2 − f0)(x1 − x0)
(z1 − z0)(x2 − x0)− (z2 − z0)(x1 − x0)

cx=
f1 − f0 − cx(z1 − z0)

x1 − x0
ca=f0 − cxx0 − czz0

(14)

4. RE-INITIALIZATION

The re-initialization of a level-set scalar, �, to a distance function can be performed in several
ways. Depending on the method, the �=0 surface may be more or less distorted by the re-
initialization. One way to re-initialize is to evolve

�̇=1− |∇�| (15)

to steady state [8]. Another way is to use a fast marching method [9], where the algorithm
builds the scalar �eld outward from the �=0 surface.
Because the distance function depends solely on the �=0 surface, it is essential that the

solution is truly upwinding.

4.1. Re-initialization equation

The re-initialization according to Sussman et al. [8] is based on

�̇=sgn(�0)(1− |∇�|) (16)

or

�n+1 =�n −�t sgn(�0)(|∇�| − 1) (17)

where n is the time step number, �t is the time step and sgn(�0) is a sign function.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:653–673
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4.2. An upwind scheme for the re-initialization

If the approximation of |∇�| in Equation (17) uses values from both sides of the front, �=0,
i.e. both positive and negative values, it is not upwinding because some information travels
in the direction towards the front. Therefore the gradient, |∇�|, must be computed based on
an upwinding discretization. This is accomplished by the approximation

∇�≈∇up�≈ �
n

D
(18)

where D is the estimated signed distance to the front, see Figure 2. D is computed from the
initial �eld and thus preserves its value during the iterations,

�0

D
≈
√(

�x�0

�x

)2
+
(
�z�0

�z

)2
⇒D≈ �0√(

�x�0

�x

)2
+
(
�z�0

�z

)2 (19)

The �nite di�erences are computed as follows:

�x�0=max

(
|�0i+1; j − �0i−1; j|

2
; |�0i+1; j − �0i; j|; |�0i; j − �0i−1; j|; �

)

�z�0=max

(
|�0i; j+1 − �0i; j−1|

2
; |�0i; j+1 − �0i; j|; |�0i; j − �0i; j−1|; �

) (20)

Here �≈ 10−5, is a prescribed small number. This robust discretization is the 2D analogue of
the 1D formulation in Reference [5, Equation (17)].

4.3. The smoothed sign function

The sign function, sgn(�0) has to be smoothed near the �=0 surface, because the function

sgn(�0)=
�0

|�0| (21)

is discontinuous at �0 = 0. Instead the distance to grid ratio is used. In 1D it is written:

sgn(�0)=
D
�x

(22)

whereas in 2D it can be written

sgn(�0)=
D
�xe

=
�0√(

�x�0

�x

)2
+
(
�z�0

�z

)2 1
�xe

≈ �0√
(�x�0)2 + (�z�0)2

(23)

The absolute value of the sign function should go to 1 when further than one grid point away
from the interface. This function does this, because �xe is a measure of the grid size. When
� is not too far from being a distance function, the di�erence root expression is a measure
of the grid size. As can be seen from Figure 3, the sign function, (21), yields 1 at t=1 and
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Figure 3. A level-set propagating to the right, pictured at three di�erent times, t.

2, and −1 at t=3. From Equation (23) it is 0:5 at t=1, 0:1 at t=2 and −0:1 at t=3, i.e.
this sign function is smoothed, which gives a more stable numerical solution.

4.4. The re-initialization equation with the sub-cell �x

Inserting Equations (19) and (23) in Equation (17) gives

�n+1 =�n −�t �0√
(�x�0)2 + (�z�0)2


∣∣∣∣�n�0

∣∣∣∣
√(

�x�0

�x

)2
+
(
�z�0

�z

)2
− 1

 (24)

4.5. Comparison with Russo and Smereka’s work

The present formulation reduces to the formulation in Reference [5] for isotropic grids. If the
expression for D, Equation (19), is used together with �x=�z, then

D=
�x�0√

(�x�0)2 + (�z�0)2
(25)
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Figure 4. The �=0 iso-contour before re-initialization (solid) and after the sub-cell-�xed (dotted)
and non-sub-cell-�xed (dashed) re-initialization.

Also, on an isotropic grid, Equation (24) becomes

�n+1 =�n − �t
�x

D
(
|�n| �

0

|�0|
1
D

− 1
)

(26)

or

�n+1 =�n − �t
�x
(sgn(�0)|�n| −D) (27)

which is the equation for an isotropic grid of the Russo and Smereka sub-cell �x [5].

4.6. Comparison of re-initialization methods

The present re-initialization method with Russo and Smereka’s sub-cell �x [5] is compared
to the method by Sussman et al. [8] in Figure 4. Here, a grid of 10× 10 points is used in
a two-dimensional computational domain (06x61 m; 06z61 m). A �=0 surface us �rst
prescribed. Two re-initialization methods are then applied.
As can be seen, the re-initialization without the sub-cell �x disturbs the �=0 surface in

a few grid cells around the corner. The re-initialization with the sub-cell �x also moves the
surface somewhat, but this di�erence is negligible small.
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5. PROBABILITY DISTRIBUTION OF DISTANCE FUNCTION

5.1. The test case

A two-dimensional test is designed to explore the di�erence between the PDF for distance
function and the PDF for �ame position. The test is based on the VR-1 con�guration, in-
vestigated previously [3, 4]. In VR-1, a turbulent V-shaped �ame is established downstream
of a prismatic �ame holder in a duct with a rectangular section. Only the lower half of the
duct after the �ame holder is considered in the present test. The �ame is described with the
�G level-set, where �G=0 denotes the mean �ame position. The simulated mean �ame orig-
inates from the lower edge of the �ame holder at x=0 m, y=0:04 m and extends through
the outlet at x=0:74 m, y=0:01 m, see Figures 5 and 6. Sinusoidal waves are generated
around the mean �ame position ( �G=0). The mean amplitude, amp, increases linearly along
the �G=0 line, i.e. amp=At, where t is the tangential co-ordinate along the �G line, see Figure
5. The amplitude and the phase of the wave are altered in such a way that the distribution
of �ame position along a normal, n, to the �G=0 line is Gaussian. This is accomplished by
the following Box–M�uller expression [10]:

	=0:5
√
−2 ln(r1) sin(2�(r2 + t)) (28)

Here, r1 and r2 are independent random numbers with a uniform distribution between 0 and
1 and 	 is the position of the �ame along the normal, n.
The wave �eld at one set of random numbers r1 and r2 is shown in Figure 6. Here the

e�ect of re-initialization can also be seen. In the present case, the initial �eld is chosen to
be computed with a constant (=1) gradient in the direction of the normal, n, to �G=0. This
generates a level-set �eld where all levels have the same shape as the zero level. The reason
for doing this is that it gives a better starting value for the re-initialization and hence speeds
up the computations. The G-�eld is generated using:

G(x; y)=G0(x; y)− At
2

√
−2 ln(r1) sin(2�(r2 + pm t)) (29)

where G0 is the re-initialized �G �eld around the mean line, �G=0, prior to the generation of
the wave. A and pm are amplitude and frequency, respectively. The wavelength is related to
the frequency as wl=1=pm. The in�uence of A and pm can be seen in Figure 7. The factor
At is proportional to the standard deviation of the �ame position distribution.

t

0 0.2 0.4 0.6

0.02

0.04

0.06

0

2 amp

n

G=0

G=0

x [m]

y 
[m

]

Figure 5. Sketch of a wave generated around the mean �ame line, �G=0.
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Figure 6. Initial (before re-initialization, upper �gure) and re-initialized
(lower �gure) level-set �elds of one wave realization.

Ten thousand realizations (with di�erent r1 and r2) are generated and the values of G
before and after re-initialization at four sampling points of the �eld is stored. The four points
are denoted by their y-indices (l=2; 14; 25; 35) and located as sketched in Figure 8. The four
points are approximately located on the same normal to the �G=0 line.

5.2. Grid

The grid consists of 410 times 35 nodes in x and y directions, respectively, and the cell size
is 1:8mm× 1:8mm. The base �G=0 line is computed in a real �ame con�guration [3, 4, 11].
The sensitivity to the grid resolution has been tested in a similar con�guration with isotropic
grid. For all the frequencies and all the amplitudes, except A=0:001m, the present cell size
was su�cient. The amplitude A=0:001m is less than the cell size, hence it is too small when
using a �rst-order scheme.

5.3. Distributions

Figures 9, 10 and 12 show the distributions of �amelet position and the distributions of
distance function for three di�erent amplitudes, A, and the same frequency, pm. The eight
diagrams in each �gure show the number of hits, i.e. the number of realizations G(x; y) in
the incremental range [dA; dB], where dB − dA is the so-called bin-width. If the number of
realizations goes to in�nity and dB − dA goes to zero, the number of hits divided by the
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Figure 7. Waves with the same phase and period but di�erent amplitudes (upper) and waves with the
same amplitude and phase but di�erent frequencies (lower).

l=2

l=25

l=35

l=14

Figure 8. Sketch of the four nodes in which statistics are computed. The upper bound-
ary is the symmetry of the duct and the lower one represents the wall. The thick line

crossing the l=14 node represents the �G=0 iso-contour.
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Figure 9. Distributions of �amelet position (upper) and distributions of
distance function (lower) for A=0:01 m and pm=10 m−1.
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Figure 10. Distributions of �amelet position (upper) and distributions of
distance function (lower) for A=0:05 m and pm=10 m−1.

number of realizations converges to a PDF. The distributions of the �rst rows (a)–(d) come
from the wave-�elds before re-initialization whereas the second row (e)–(h) presents the data
after the re-initialization. Diagrams (b) represent the distribution of �amelet position around
the mean �ame and the diagrams of the second row (e)–(h) represent the distribution of
distance function in the four sample points.
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G

D

Figure 11. Sketch of an occasion when the distance function (D) is less
than the distance to the mean �ame surface ( �G).

In Figure 9 the mean amplitude is very low compared to the distance from the sampling
points to the mean �ame. This case represents a low level of �amelet wrinkling. For such
small amplitudes, the distribution is similar in all points. Here, wrinkling can be interpreted
as the �ame surface area to volume ratio.
In Figure 10 the wave amplitude is in the same order of magnitude as the distance from

the sampling points to the mean �ame. The level of �amelet wrinkling is higher. There is a
clear di�erence between the distribution for �amelet position and the distributions of distance
function. It can be seen that the distribution of distance function is skewed even at l=25,
which is not due to the proximity of the wall or the symmetry plane. The wall may be
in�uential at l=2 and the e�ect of the symmetry plane may be seen at l=35. Instead,
the reason is that away from the mean �ame position there may always be some segment
of the wave which is closer to the sampling point than the distance from the sampling point to
the mean �ame position (see Figure 11). An important di�erence, apart from the skewness, is
that the mean is also di�erent in the non-re-initialized and the re-initialized distributions. There
is also a di�erence in the PDF shape with and without re-initialization at l=14, although the
mean is preserved since �G=0 at l=14.
In Figure 12 the level of �amelet wrinkling is very high. The mean amplitude is so high

that the e�ects of the boundaries of the computational domain start to be evident. It can be
seen even at l=14 in the distribution of the re-initialized wave, the symmetry (l=35) and
the wall (l=1) stops the distance function from being much larger than the distance limited
by these boundaries. In a real V-shaped �ame, there would also be interaction with the upper
part of the twin �ame, an e�ect which is neglected here.
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Figure 12. Distributions of �amelet position (upper) and distributions of
distance function (lower) for A=0:1 m and pm=10 m−1.

5.4. Di�erence in distributions

A classical means for comparing probability distributions is the Kolmogorov–Smirnov test.
Here, a two-sample version of this test is employed to compare the corresponding distributions
from the sample points l=2, 25 and 35 with the distribution from l=14. The test is performed
using the mathematical software Octave and the function therein.
In short it works as follows. The N independent samples are x0 : : : xN−1. S(xj) is the fraction

of observations less than or equal to xj. F(x) is the reference cumulative distribution, which
in this two-sample test is the cumulative distribution at l=14. The Kolmogorov–Smirnov test
statistic is computed by

ks=
√
N ∗max(|S(xj)− F(xj)|) (30)

The test statistic is usually compared to tabulated critical values in order to determine at
which level of con�dence the distribution S(x) is the same as F(x). The lower the value, the
higher the probability that the distributions are the same. Here the interest is, however, more
in the relative values and no comparison to the critical is made. The results of the test are
shown in Figure 13. As expected, increasing wave amplitude leads to increasing the di�erence
between the distributions. At the lowest values of A, the in�uence of the grid resolution starts
to be in�uential. Here A is of the same order as the resolution. It is also rather clear how the
distance from the sample point to the l=14 point a�ects the solution, because the di�erence
in l=2 and 25 which are at a similar distance from l=14 typically gives the same di�erence,
which is lower than the di�erence at l=35. Increasing the wave frequency, pm, also increases
the di�erence.

5.5. Detailed investigation of PDFs

In order to investigate the di�erence between the PDF of �ame position and the PDF of
distance function at di�erent positions inside and outside the �ame brush in more detail, a
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Figure 13. Two-sample Kolmogorov–Smirnov test comparing the distribution at l=2, 25 and 35 to the
corresponding distribution at l=14. The grid size is �x=0:0018 m.

rectangular test box is devised. The test box is 1 m wide (x direction) and 2 m high (y
direction). The G=0 surface, which is modelled here by sine waves according to Equation
(29), is given at a quarter of the height (y=0, see Figure 14). The wavelength is set to twice
the amplitude and again 10 000 realizations with di�erent r1 and r2 are generated. This �gure
also shows the re-initialized G-�eld for the realization. In this con�guration, co-ordinate y
represents the distance to the mean �ame position.
In a real �ame, the eddies wrinkle the �ame so that the wavelength is roughly some multiple

of the amplitude, see Figure 15. However, a real �ame is a�ected by a spectrum of eddy
sizes whereas the present test �ame is only a�ected by one size at a time. Nevertheless, the
in�uence of the �amelet wrinkling on the PDF of distance function is qualitatively retained
in this test.
The grid consists of 50× 100 mesh points in x and y directions, respectively. The resulting

statistics are computed with the Octave software and presented in Figure 16.
The mean distance function represents the mean value of the distance to the instantaneous

laminar �amelet. It is shown to be fairly di�erent from the distance to the mean �ame (co-
ordinate y in Figure 16). The mean value of the distance function is a linear function of y at
points far away from the mean �ame position (y¿0:3 m). Around the mean �ame position,
the mean value of the distance function varies very slowly with respect to y, the distance to
the mean position (the curves for the mean have a zero gradient at y=0). This �attening is
more pronounced for wavelengths which are short compared to the amplitude, i.e. for highly
wrinkled �ames. As a summary, we notice that

|∇ �G|=1 far away from the mean �ame brush

|∇ �G|�1 inside the mean �ame brush (31)

This result is important for the RANS FLA. It implies that in the re-initialization equation
(Equation (2)), variable � is fairly di�erent in di�erent regions of the �ow�eld. Special care
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Figure 14. Computational domain for testing details of the PDF for distance function. One realization
of �ame position (G=0) and the re-initialized G-�eld are shown.

has to be taken in the re-initialization. Peters [2] proposed a co-ordinate stretching method:
Equation (2) with �=1 is �rst solved; the calculated �G �eld is then re-scaled by the factor
� which is modelled as the ratio of wrinkled �amelet surface area to the mean �ame surface
area. Since ��1, the condition |∇ �G|�1 is ful�lled. In a recent work [4], it was shown that
the re-scaling of distance function can lead to signi�cant improvement of the simulation of
intermediate species. As noted, the co-ordinate stretching method is not valid for the �ow�eld
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Figure 16. Simulated mean and standard deviation of the distance function
for di�erent wavelength and amplitude.

far away from the mean �ame brush. A more accurate model for the re-initialization of the
mean distance function is needed.
The standard deviation of the distance function may be approximated as constant along the

normal to the mean �ame surface, as shown by the standard deviation as a function of y being
rather �at when the wavelength is a multiple of the amplitude (lines with circle symbols).
This is particularly true in the mean turbulent �ame brush. The value of the standard deviation
of distance function is closely related to the standard deviation of the �amelet position (which
is proportional to the wave amplitude here).

5.6. Application to �ame simulation

The above simulated sine wave �ame may be used directly in the prediction of a premixed
turbulent �ame together with a �amelet library (using Equation (3)). Figure 17 shows the
CO mole fraction obtained with two di�erent methods: the D-PDF and the P-PDF methods.
In the D-PDF method, the instantaneous distance function at G �=0 is calculated after each
realization of the instantaneous �ame surface (G=0). Therefore, the e�ect of �ame wrinkling
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Figure 17. CO mole fraction from a previous experiment [11] and from numerical
simulations using two di�erent PDF approaches.

on the skewness and shape of the distance function PDF is taken into account. In the P-
PDF approach, the shape of PDF of the distance function is assumed to be the same as that
of the �amelet position (here a Gaussian distribution is assumed), and the mean distance
function is calculated using Equation (2) with �=1. Here the amplitude and frequency are
set to amp=0:04t + 0:01m and pm=250m−1. t=

√
x2 + (y + 0:04)2≈ x. As can be seen

from Figure 17, the predictions improve signi�cantly when the e�ect of �amelet wrinkling on
the PDF of the distance function is taken into account (D-PDF). When the PDF of distance
function is assumed to be the same as the one of the �amelet position (P-PDF), the simulated
CO is much lower than the measurement. More details about the experimental data can be
found in Reference [11]. The reason for this is the increased probability of being close to
a �amelet in the mean �ame brush. This is particularly important for intermediate species,
which only exist in a thin layer in the �amelet co-ordinate [4].
The integrated sinus wave arc length per unit length of mean �ame line varies from 12 at

the �ame holder to 32 at the outlet. This is comparable to the ratio of the wrinkled �ame
surface area to the mean surface area, which in the present case is about 10. As seen, they
are in the same order of magnitude. The prediction can be improved when a more realistic
shape of �amelet wrinkling (a three-dimensional fractal surface) is considered.

6. CONCLUDING REMARKS

The di�erence between the probability distribution of �amelet position and the distribution of
distance function has been investigated. It is shown that the distribution of distance function
is skewed at positions away from the mean �ame surface, particularly at distances comparable
to the amplitude.

• The mean distance function is not equivalent to the distance to the mean �ame position,
i.e.

|∇ �G| �=1 (32)
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which has been argued previously [2]. Around the mean �ame position ( �G=0), the
mean distance function varies very slowly. Outside the �ame brush, the mean distance
function is a linear function of the distance to the mean �ame position.

• The standard deviation of the distance function can be approximated as constant when
the �ame wrinkling amplitude is comparable to the wrinkling wavelength, i.e.

∇� · ∇ �G≈ 0
An extension method for the solution of this equation is presented.

• Close to the mean �ame position (| �G| ∼ amp), the shape of the distance function PDF
may be presumed to be similar to the �ame position PDF, if amp is small compared to
the combustor size.

The present sinusoidal shape does not resemble a real �ame structure exactly. A real �ame
structure has a fractal shape with a whole spectrum of wrinkling amplitudes and wavelengths
overlayed. In a continuation of this work, a more realistic �ame shape may be used, per-
haps also in three dimension. It may be interesting to study the distributions of other �ame
properties, e.g. of inclination relatively the mean �ame surface and of �ame surface density.
A model based on the distributions of distance to �amelet, obtained by Monte-Carlo sim-

ulations from presumed distributions of �ame position and inclination may be developed.
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